Factor Congruences in Semilattices

نویسنده

  • PEDRO SÁNCHEZ TERRAF
چکیده

We characterize factor congruences in semilattices by using generalized notions of order ideal and of direct sum of ideals. When the semilattice has a minimum (maximum) element, these generalized ideals turn into ordinary (dual) ideals. Resumen. En este trabajo damos una caracterización de las congruencias factor en semirret́ıculos usando nociones generalizadas de ideal y suma directa de ideales. Cuando un semiret́ıculo tiene elemento mı́nimo (máximo), estos ideales generalizados resultan ideales (duales) ordinarios.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Congruence Classes in Brouwerian Semilattices1

Brouwerian semilattices are meet-semilattices with 1 in which every element a has a relative pseudocomplement with respect to every element b, i. e. a greatest element c with a∧c ≤ b. Properties of classes of reflexive and compatible binary relations, especially of congruences of such algebras are described and an abstract characterization of congruence classes via ideals is obtained.

متن کامل

Congruence lattices of pseudocomplemented semilattices

Congruence lattices of algebras in various varieties have been studied extensively in the literature. For example, congruence lattices (i.e. lattices of ideals) of Boolean algebras were characterized by Nachbin [18] (see also Gratzer [9] and Jonsson [16]) while congruence lattices of semilattices were investigated by Papert [19], Dean and Oehmke [4] and others. In this paper we initiate the inv...

متن کامل

Varieties Whose Tolerances Are Homomorphic Images of Their Congruences

The homomorphic image of a congruence is always a tolerance (relation) but, within a given variety, a tolerance is not necessarily obtained this way. By a Maltsev-like condition, we characterize varieties whose tolerances are homomorphic images of their congruences (TImC). As corollaries, we prove that the variety of semilattices, all varieties of lattices, and all varieties of unary algebras h...

متن کامل

Varieties Having Boolean Factor Congruences

Every ring R with identity satisfies the following property: the factor ideals of R (i.e., those ideals I such that I+ J= R and In J= (0) for some ideal J) form a Boolean sublattice of the lattice of all ideals of R. The universal algebraic abstraction of this property is known as Boolean factor congruences (BFC) or as the strict refinement property; more examples of algebras having BFC are lat...

متن کامل

ar X iv : m at h / 05 01 43 6 v 1 [ m at h . G M ] 2 5 Ja n 20 05 TENSOR PRODUCTS OF SEMILATTICES WITH ZERO , REVISITED

Let A and B be lattices with zero. The classical tensor product, A ⊗ B, of A and B as join-semilattices with zero is a join-semilattice with zero; it is, in general, not a lattice. We define a very natural condition: A ⊗ B is capped (that is, every element is a finite union of pure tensors) under which the tensor product is always a lattice. Let Conc L denote the join-semilattice with zero of c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008